
Introduction to verified computation

August 2019

Toyo University

INIAD

Research on Numerical Analysis

Kouta Sekine

c⃝ Copyright by Kouta Sekine, 2019

All Rights Reserved.

ii

Contents

Chapter 1. Preliminary . 1

1.1. Usage of g++ . 2

1.2. Mathematical Notations . 2

Chapter 2. What’s verified computation? 5

2.1. Numerical Computations and Its Error 6

2.2. Verified Computations and Interval Arithmetic on Real Numbers . . 8

2.3. Disadvantages of interval arithmetic 9

Chapter 3. Floating-Point Number and Its Interval Arithmetic 13

3.1. IEEE 754 : Standard for Floating-Point Arithmetic 14

3.2. Interval Arithmetic on Floating-Point Numbers 16

3.3. How to Change Rounding Rules . 16

Chapter 4. Interval Arithmetic for Matrix on floating-point

number . 21

Chapter 5. Verification Theory for System of Linear Equations 25

Chapter 6. How to Install Some Packages 31

6.1. Install BLAS and Lapack . 32

6.2. Install kv library and VCP Library 36

iii

Chapter 1

Preliminary

1

1.1. Usage of g++

In this lecture, we will use the C++11 from the gcc compiler. If you have never

used the C++ language, you try it now!

Exercise 1.1. Write the Algorithm 1 and run it. Let’s filename be “hello.cpp”.

Algorithm 1 hello.cpp

#incluide < iostream >
int main(void){
std::cout << “Hello” << std::endl;
}

You can compile the following command for “hello.cpp” by using g++ on the

Gnome terminal:

$ g ++ hello.cpp

Finally, you execute the program using the following command:

$./a.out

If display “Hello world!”, then succeed.

1.2. Mathematical Notations

In this section, we prepare some mathematical notations.

• Let R be the set of real numbers.

• The closed interval denoted by [a, b] which is the set of real numbers given

by [a, b] = {x ∈ R|a ≤ x ≤ b}.

• Let I denote the n× n identity matrix.

• Let O denote the n × n matrix of all zeros and 0 denote the n-vector of all

zeros.

• Let e the n-vector of all ones i.e. e := (1, . . . , 1)T ∈ Rn.

2

• Inequalities for matrices are understood componentwise, e.g. for real n × n

matrices A = (aij) and B = (bij) the notation A ≤ B means aij ≤ bij for all

(i, j).

• The notation |A| means |A| = (|aij|) ∈ Rn×n, the nonnegative matrix con-

sisting of componentwise absolute values of A.

• Similar notation is applied to real vectors.

• Let ∥ · ∥ denote the norm of vector and matrix.

• For a n dimensional vector x = (x1, · · · , xn)
T , the maximum norm is defined

by ∥x∥∞ := max1≤i≤n |xi|.

• For a m × n matrix A = (aij) , the maximum norm is defined by ∥A∥∞ :=

max1≤i≤m

∑n
j=1 |aij|.

• Let IR be set of real intervals.

• Let F be set of floating-point numbers defined by IEEE 754 standard.

• Let IF be set of intervals for floating-point numbers.

3

Chapter 2

What’s verified computation?

5

2.1. Numerical Computations and Its Error

Numerical computation solved to some problems. For example, system of linear

equations

Ax = b, A ∈ Rn×n, b ∈ Rn, (1)

we can efficiently obtain an approximate solution x̃ of (1) using some software pack-

ages1, even if n is 10000. Of course, I do not want to solve to this problem by hand

calculation!! However, when floating-point arithmetic is used for numerical compu-

tations, then the solution includes rounding errors. In general, rounding errors are

small. However, in some cases solutions are affected by rounding error. Let’s feel

rounding errors.

Exercise 2.1. Write the Algorithm 2 and run it.

Algorithm 2 sqrtpow.cpp

#incluide < iostream >
#incluide < cmath >

int main(void){
int n;
double x = 2.0;
std::cout << ”Please input a positive integer number” << std::endl;
std::cin >> n;
std::cout << ”Exact: ” << x << std::endl;

for (int i = 0; i < n; i++){
x = std::sqrt(x);
}
for (int i = 0; i < n; i++){
x = std::pow(x,2);
}
std::cout << ”Approximate: ” << x << std::endl;
}

1In this lecture, we will use the Lapack(Linear Algebra PACKage) with the BLAS(Basic Linear
Algebra Subprogram). See Section 6.1.

6

Example of execution:

$ g ++ sqrtpow.cpp

$./a.out

Please input a positive integer number n =

0

Exact : 2.0000000000000000

Approximate : 2.0000000000000000

$./a.out

Please input a positive integer number n =

25

Exact : 2.0000000000000000

Approximate : 2.0000000066771721

$./a.out

Please input a positive integer number n =

50

Exact : 2.0000000000000000

Approximate : 1.6487212645509468

$./a.out

Please input a positive integer number n =

55

Exact : 2.0000000000000000

Approximate : 1.0000000000000000

7

Algorithm 2 first repeatedly run the square root of x by for statement. Next, the

program repeatedly run the square of x by for statement. If real numbers, exactly

the same as before. However, because we use floating-point numbers, results include

rounding errors.

2.2. Verified Computations and Interval Arithmetic on Real

Numbers

Numerical solutions include rounding errors. Therefore, we do not know how

accurate computed solutions are. Verified computations solve this problem. The

essence of verified computation is interval. For example, floating-point numbers can’t

describe 1/3 = 0.3333 · · · . In verified computation, we describe interval [0.33, 0.34]

which enclose 1/3. Since intervals contain the exact solutions, we can understand

how the accuracy of approximate solutions.

How do you calculate four arithmetic operators in intervals?

Definition 2.2 (Interval Arithmetic on real numbers). Let IR be set of real

intervals. For x = [x, x̄] ∈ IR and y = [y, ȳ] ∈ IR, we define the following interval

arithmetic:

x+ y = [x+ y, x̄+ ȳ]

x− y = [x− ȳ, x̄− y]

x · y = [min(x̄ · ȳ, x̄ · y, x · ȳ, x · y), max(x̄ · ȳ, x̄ · y, x · ȳ, x · y)]

x/y = [min(x̄/ȳ, x̄/y, x/ȳ, x/y), max(x̄/ȳ, x̄/y, x/ȳ, x/y)] for 0 ̸∈ y

For ◦ = {+,−, ·, /}, Definition 2.2 satisfy

x̃ ◦ ỹ ∈ x ◦ y, ∀x̃ ∈ x, ∀ỹ ∈ y.

8

Example 2.3. Let x = [−2, 4] and y = [1, 2]. Calculate four arithmetic operators

using the interval arithmetic.

x+ y = [−2, 4] + [1, 2] = [−2 + 1, 4 + 2] = [−1, 6]

x− y = [−2, 4]− [1, 2] = [−2− 2, 4− 1] = [−4,−3]

x · y = [−2, 4] · [1, 2] = [min(−2,−4, 4, 8),max(−2,−4, 4, 8)] = [−4, 8]

x/y = [−2, 4]/[1, 2] = [min(−2,−1, 4, 2),max(−2,−1, 4, 2)] = [−2, 4]

Exercise 2.4. Let x = [2, 4] and y = [−2,−1]. Calculate four arithmetic opera-

tors using the interval arithmetic.

2.3. Disadvantages of interval arithmetic

Interval arithmetic leads to overestimation.

Example 1:

For set x = [−1, 1], we can estimate

x2 = [−1, 1]2 = [−1, 1].

Of course, from x2 >= 0, x2 = [−1, 1] is overestimate.

Example 2:

We consider a rotation matrix

A(θ) =

 cos(θ) − sin(θ)

sin(θ) cos(θ)

 ,

and interval vector

x =

 x1

x2

 =

 [-1, 1]

[-1, 1]

 .

x means Figure 2.1.

9

x1

x2

(-1,-1) (1,-1)

(1,1)(-1,1)

Figure 2.1. Wrapping effect1

A(π/4)x means Figure 2.2. However, using interval arithmetic, we have

A(π/4)x =

 √
2
2

−
√
2
2

√
2
2

√
2
2

 [-1, 1]

[-1, 1]

 =

 [−
√
2,
√
2]

[−
√
2,
√
2]

 ,

and this interval means Figure 2.3. In this way, it is overestimated for the expression

by intervals.

x
1

x
2

Figure 2.2. Wrapping effect2

Moreover, A(π/4) (A(π/4)x) means Figure 2.2, however,

A
(π
4

)(
A
(π
4

)
x
)
=

 [− 2, 2]

[− 2, 2]

likes Figure 2.4.

This overestimation is called a wrapping effect.

10

x1

x2

(- 2,- 2) (2,- 2)

(2, 2)(- 2, 2)

Figure 2.3. Wrapping effect3

x1

x2

(-2,-2) (2,-2)

(2,2)(-2, 2)

Figure 2.4. Wrapping effect4

Since interval arithmetic is overestimated, it is better to calculate it later. For

example, changing the calculation order:

(
A
(π
4

)
A
(π
4

))
x =

 0 −1

1 0

 [-1, 1]

[-1, 1]

 =

 [− 1, 1]

[− 1, 1]

 .

There are other methodes to reduce overestimation by a means value form and

affine arithmetic.

11

Chapter 3

Floating-Point Number and Its

Interval Arithmetic

13

3.1. IEEE 754 : Standard for Floating-Point Arithmetic

The IEEE 754 : Standard for Floating-Point Arithmetic is a technical standard for

floating-point number. Floating-point unit of many CPU use the IEEE 754 standard.

For more detail, see

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4610935

In this chapter, I will introduce to formats of floating-point number in IEEE 754.

Next, I will describe rounding rules.

IEEE 754 standard have single and double formats which are binary floating-point

basic formats. Representations of floating-point numbers in the binary formats are

(−1)s × 2e ×m, where

a) s is 1-bit sign (0 or 1)

b) e is any integer satisfying emin ≤ e ≤ emax.

c) m is a number represented by the form d0.d1d2 · · · dp−1 where di is 0 or 1.

The value of emax and p are given in Table 3.1 (emin shall be 1− emax).

Table 3.1. Verification results.

Parameter single double
p 24 53

emax 127 1023

In Figure 3.1, we displays the representation of Single format. We note that start

of the significand field is d1 because we can put d0 = 1 i.e. normalization.

Sign s Exponent e (8bit) Significand field p-1 (23bit)

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10d11d12d13d14d15d16d17d18d19d20d21d22d23e0 e1 e2 e3 e4 e5 e6 e7s

Figure 3.1. Representation of Single format.

14

Example 3.1. Convert from the following 10 decimal numbers to the floating

point number. Here, p = 4 and e have 3 bit.

7.25 = (111.01)2

= (−1)0 × 22 × (1.1101)2

where (·)2 means 2 decimal numbers. Answer is

0 010 1101

Let F be set of floating-point numbers defined by IEEE 754 standard. You can

notice that if p = 3 in Example 3.1 , then we can not represent the floating point

number. Here, we have F ⊂ R. IEEE 754 standard defines five rounding rules. In

this lecture, we introduce following three rounding rules:

a) Rounding to Nearest :

・Rounding to Nearest rounds to the nearest value.

・This operator is denoted by 2 : R → F

b) Rounding toward +∞ :

・Rounding toward +∞ directed rounding towards positive infinity.

・This operator is denoted by △ : R → F

c) Rounding toward −∞ :

・Rounding toward −∞ directed rounding towards negative infinity.

・This operator is denoted by ▽ : R → F

From Figure 3.2 , the real number r is enclosed by interval [▽r,△r].

0
Real number r

rr

0
Real number r

rr

Figure 3.2. Rounding (· is a floating-point number).

15

3.2. Interval Arithmetic on Floating-Point Numbers

In Section 2.2, we define the interval arithmetic on real numbers. However, in

some cases, real numbers are not represented floating-point numbers. We now extend

Definition 2.2 to use a computer.

Definition 3.2 (Interval Arithmetic on floating-point numbers). Let IF be set

of intervals for floating-point numbers. For x = [x, x̄] ∈ IF and y = [y, ȳ] ∈ IF, we

define the following interval arithmetic:

x+ y = [▽(x+ y),△(x̄+ ȳ)]

x− y = [▽(x− ȳ),△(x̄− y)]

x · y

= [min(▽(x̄ · ȳ), ▽(x̄ · y), ▽(x · ȳ), ▽(x · y)), max(△(x̄ · ȳ), △(x̄ · y), △(x · ȳ), △(x · y))]

x/y

= [min(▽(x̄/ȳ), ▽(x̄/y), ▽(x/ȳ), ▽(x/y)), max(△(x̄/ȳ), △(x̄/y), △(x/ȳ), △(x/y))] for 0 ̸∈ y

3.3. How to Change Rounding Rules

Using fenv.h in a C99-conformant C-language compiler allows you to use the

fesetround function, which changes the rounding mode.

We now show Algorithm 3 which include setround function and getround function.

The setround function is setting rounding rules and this argument is −1, 0 and 1.

setround(0) : Rounding to Nearest

setround(1) : Rounding toward +∞

setround(−1) : Rounding toward −∞

16

The getround function returns current rounding rules (but not setting). Return value

is:

0 : Rounding to Nearest

1 : Rounding toward +∞

−1 : Rounding toward −∞

Algorithm 3 change round.hpp

#ifndef CHANGE ROUND HPP
#define CHANGE ROUND HPP

#include <iostream>
#include <fenv.h>

void setround(volatile int a){
if (a == −1) fesetround(FE DOWNWARD);
else if (a == 0) fesetround(FE TONEAREST);
else if (a == 1) fesetround(FE UPWARD);
else std::cout << ”ERROR: setround” << std::endl;
}

volatile int getround(){
volatile int r = fegetround();
switch (r){
case FE DOWNWARD:
return -1;
break;
case FE TONEAREST:
return 0;
break;
case FE UPWARD:
return 1;
break;
default:
std::cout << ”ERROR: getround” << std::endl;
return -1000;
}
}
#endif

We next show how to use the setround function and the getround function

17

Exercise 3.3. Write the Algorithm 4 and run it. Here, you need to use the

following command:

$ g ++ − I. − std == c11 roundtest.cpp

Algorithm 4 roundtest.cpp

#include<iostream>
#include<change round.hpp>

int main(void){
std::cout << std::hexfloat;
volatile double x, y, z;
x = 1.0;
y = 3.0;

std::cout << getround() << std::endl;
z = x/y;
std::cout << z << std::endl;

setround(1);
std::cout << getround() << std::endl;
z = x/y;
std::cout << z << std::endl;

setround(-1);
std::cout << getround() << std::endl;
z = x/y;
std::cout << z << std::endl;
}

18

Example of execution:

0

0x1.5555555555555p− 2

1

0x1.5555555555556p− 2

−1

0x1.5555555555555p− 2

19

Chapter 4

Interval Arithmetic for Matrix

on floating-point number

21

In Section 3.2, we define the interval arithmetic on floating-point number. We

extend Definition 3.2 to use a matrix.

Definition 4.1 (Add and Subtract : Interval Arithmetic for matrix). Let IF be

set of intervals for floating-point numbers. For X = [X, X̄] ∈ IFn×m and Y = [Y, Ȳ] ∈

IFn×m, we define the following interval arithmetic:

X + Y = [▽(X+Y),△(X̄ + Ȳ)]

X − Y = [▽(X− Ȳ),△(X̄ −Y)]

Next, we want to show the matrix multiplication. However, matrix multiplication

is calculated by many add and multiply. Therefor, we define midrad form of intervals.

Let x be an interval of real number. Real numbers xm and xr are defined by

xm =
x̄− x

2
+ x,

xr = xm − x.

Then, we rewrite the interval x as

⟨xm, xr⟩ = [x, x̄].

Here, xm and xr means midpoint and radius of interval x, respectively.

Next, let x be an interval of floating-point number. floating-point numbers xm and

xr are defined by

xm = △
(
x̄− x

2
+ x

)
,

xr = △ (xm − x) ,

where △(·) means that all calculation in curly bracket is upward. Here, we have

[x, x̄] ⊂ ⟨xm, xr⟩ ⊂ [▽(xm − xr),△(xm + xr)].

22

The midrad form is applied to matrix multiplication for interval.

Definition 4.2 (Add and Subtract : Interval Arithmetic for matrix). Let IF

be set of intervals for floating-point numbers. For X = ⟨Xm, Xr⟩ ∈ IFn×m and

Y = ⟨Ym, Yr⟩ ∈ IFm×n, we define the following interval arithmetic:

X · Y = [▽(Xm · Ym − C),△(Xm · Ym + C)]

where

C = △((|Xm|+Xr) · Yr +Xr · |Ym|).

23

Chapter 5

Verification Theory for System

of Linear Equations

25

In this chapter, we will introduce verification theories for system of linear equations

Ax = b, A ∈ Rn×n, b ∈ Rn. (2)

We first present the Banach perturbation lemma.

Lemma 5.1 (Banach’s perturbation lemma). Let X and Y be Banach spaces. A

bounded linear operator D : X → Y has the bounded inverse operator D−1 : Y → X.

If a bounded linear operator B : X → Y holds

∥D−1B∥ < 1, (3)

then the bounded linear operator D + B : X → Y has the bounded inverse operator

(D +B)−1 : Y → X and we have

∥(D +B)−1∥ ≤ ∥D−1∥
1− ∥D−1B∥

(4)

We next present the following theorem for regularity of a matrix A ∈ Rn×n.

Lemma 5.2. Let I denote the n×n identity matrix. Let A be an n×n real matrix

and R be some approximate inverse of A. If

∥RA− I∥ < 1 (5)

is satisfied, then (RA)−1 exists and we have

∥(RA)−1∥ ≤ 1

1− ∥RA− I∥
(6)

Proof

We use Lemma 5.1 as D = I and B = RA − I. Since D−1B = I(RA − I), the

condition (3) in Lemma 5.1 is the same as the condition (5). Therefore, the matrix

RA(= D +B) has the inverse matrix (RA)−1 and we have (6).

2

26

We next present the verification theorem for system of linear equations.

Theorem 5.3. Let I denote the n × n identity matrix. Let A be an n × n real

matrix and b an n real vector. Let x∗ be a exact solution of Ax = b and x̃ an its

approximate solution. Let R be some approximate inverse of A. If

∥RA− I∥ < 1

is satisfied, then the exact solution of Ax = b exists and we have

∥x∗ − x̃∥ ≤ ∥R(b− Ax̃)∥
1− ∥RA− I∥

. (7)

Proof

We rewrite (2) as

RAx = Rb. (8)

Since RA is nonsingular from Lemma 5.2, (8) has an exact solution

x∗ = (RA)−1Rb.

We have

x∗ − x̃ = (RA)−1Rb− x̃ = (RA)−1(Rb−RAx̃)

= (RA)−1R(b− Ax̃).

Finally, from (6), we have

∥x∗ − x̃∥ = ∥(RA)−1R(b− Ax̃)∥

≤ ∥(RA)−1∥∥R(b− Ax̃)∥

≤ ∥R(b− Ax̃)∥
1− ∥RA− I∥

.

2

27

Remark 5.4. From Theorem 5.6,

∥x∗ − x̃∥ ≤ ∥R(b− Ax̃)∥
1− ∥RA− I∥

≤ ∥R∥∥b− Ax̃∥
1− ∥RA− I∥

. (9)

The notation |A| means |A| = (|aij|) ∈ Rn×n, the nonnegative matrix consisting

of componentwise absolute values of A. Similar notation is applied to real vectors.

Finally, we present an componentwise error bounds |x∗ − x̃| for Ax = b. Before that

we show the following lemma.

Lemma 5.5. Let e the n-vector of all ones i.e. e := (1, . . . , 1)T ∈ Rn. For any

x ∈ Rn,

|x| ≤ ∥x∥∞e (10)

Proof

Form the definition of infinity norm, we have

|xj| ≤ ∥x∥∞, 1 ≤ j ≤ n.

Therefore,

|x| ≤ ∥x∥∞e.

2

Theorem 5.6. Let I denote the n × n identity matrix. Let A be an n × n real

matrix and b an n real vector. Let x∗ be a exact solution of Ax = b and x̃ an its

approximate solution. Let R be some approximate inverse of A. If

∥RA− I∥ < 1

is satisfied, then the exact solution of Ax = b exists and we have

|x∗ − x̃| ≤ |R(b− Ax̃)|+ ∥R(b− Ax̃)∥∞
1− ∥RA− I∥∞

|RA− I|e. (11)

28

Proof

We have

x∗ − x̃ = RAx̃−RAx̃+Rb−Rb+ x∗ − x̃

= R(b− Ax̃) +RAx̃−Rb+ x∗ − x̃

= R(b− Ax̃) +RAx̃−RAx∗ + x∗ − x̃

= R(b− Ax̃)−RA(x∗ − x̃) + x∗ − x̃

= R(b− Ax̃) + (I −RA)(x∗ − x̃)

From (10) and (11),

|x∗ − x̃| = |R(b− Ax̃) + (I −RA)(x∗ − x̃)|

≤ |R(b− Ax̃)|+ |(I −RA)(x∗ − x̃)|

≤ |R(b− Ax̃)|+ |I −RA||x∗ − x̃|

≤ |R(b− Ax̃)|+ |RA− I|∥x∗ − x̃∥∞e

≤ |R(b− Ax̃)|+ ∥R(b− Ax̃)∥∞
1− ∥RA− I∥∞

|RA− I|e

2

29

Chapter 6

How to Install Some Packages

31

In this chapter, some software for numerical computation with guaranteed accu-

racy is installed.

First, create a folder to install:

$ mkdir niigata2019

$ cd niigata2019

6.1. Install BLAS and Lapack

BLAS (Basic Linear Algebra Subprograms) are routines that provide basic vector

and matrix operations (e.g. dot product and matrix multiplication). Because BLAS

are efficient and portable, linear algebra software use this (e.g. Lapack). Now, we

can choose some BLAS:

a) Reference BLAS :

・It is a freely-available software package but slow.

b) Intel MKL :

・It is very fast.

・You need to charge.

・MATLAB use this.

c) ATLAS :

・It is free.

・ATLAS is faster than Reference BLAS.

・However, I feel slow.

d) Open BLAS :

・It is free.

・Open BLAS is as fast as Intel MKL.

6.1.1. Install Open BLAS. In this subsection, we install the Open BLAS.

32

1) Download :

・You can download zip file or ter.gz file from the following URL.

http://www.openblas.net/

2) Unzip :

・You need to unzip to Home directory.

3) Edit Make.rule file :

・You need to edit the Make.rule file.

33

(Before)

If you don’t need LAPACK, please comment it in.

If you set NO LAPACK=1, the library automatically sets NO LAPACKE=1.

NO LAPACK = 1

⇓

(After)

If you don’t need LAPACK, please comment it in.

If you set NO LAPACK=1, the library automatically sets NO LAPACKE=1.

NO LAPACK = 1

(Before)

If you need to synchronize FP CSR between threads (for x86/x86 64 only).

CONSISTENT FPCSR = 1

⇓

(After)

If you need to synchronize FP CSR between threads (for x86/x86 64 only).

CONSISTENT FPCSR = 1

4) make command :

・You type “make” in Gnome terminal.

34

We show the following commands to install the OpenBLAS. (Newest version: 0.3.6

If you want to use the latest version, replace 0.2.20 with 0.3.6.)

$ wget http : //github.com/xianyi/OpenBLAS/archive/v0.2.20.zip

$ unzip v0.2.20.zip

$ cd OpenBLAS− 0.2.20/

$ vim Makefile.rule

$ make

$ cp libopenblas haswell− r0.2.20.a ../

$ cd ..

6.1.2. (Optional) Install MKL. MKL is free for academic users.

URL: https://software.intel.com/en-us/performance-libraries

a) Download MKL :

・Register and download mkl for linux in Windows

b) Transfer to Linux environment with scp command :

c) Expand MKL’s compressed folder.

d) Open the unzipped folder silent.cfg with a text editor.

e) Edit ACCEPT EULA = decline => ACCEPT EULA = accept.

f) Close the editor.

g) sudo ./install.sh -s silent.cfg

h) source /opt/intel/bin/compilervars.sh intel64

i) source /opt/intel/mkl/bin/mklvars.sh intel64 lp64

35

6.2. Install kv library and VCP Library

kv library is created by Masahide Kashiwagi. The kv library contains scalar in-

terval operations, highly accurate calculations, verified numerical integration, verified

ODE solver, and so on.

kv library

$ wget http : //verifiedby.me/kv/download/kv − 0.4.46.tar.gz

$ tar − zxvf kv − 0.4.46.tar.gz

$ cp − r kv − 0.4.46/kv/ ./

The vcp library contains matrix calculations, simultaneous linear equations solver,

eigenvalues solver, PDE solver, and so on.

VCP library

$ wget https : //verified.computation.jp/VCP Lib/vcp a0.0.6.zip

$ unzip vcp a0.0.6.zip

$ cp − r vcp a0.0.6/vcp/ ./

$ cp − r vcp a0.0.6/test matrix/ ./

$ cp − r vcp a0.0.6/test PDE/ ./

36

niigata2018 vcp

kv

test_matrix

test_PDE

libopenblas_haswell-r0.2.20.a

Figure 6.1. Configuring niigata2018 folders

37

